If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35b^2-4b-4=0
a = 35; b = -4; c = -4;
Δ = b2-4ac
Δ = -42-4·35·(-4)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-24}{2*35}=\frac{-20}{70} =-2/7 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+24}{2*35}=\frac{28}{70} =2/5 $
| 4m-2(m-3)=-m+6+7m | | 6(2w-6)=2(6w+10) | | w(w+5)=250 | | 5b^2+22b+8=0 | | -2p+5=7-5p-2p | | 22(4z-14=0 | | 3d+2(d-4)=0 | | 19x-50=7x+10 | | x²=-100 | | x+(2x+15)+90=180 | | 7y+4=7+2y | | 9+2z=1 | | 19+u=19 | | e+5=8 | | -3(-5y-4)+2y=-5 | | 8c-3c+7=-19-3c | | 7b^2+54b-16=0 | | v+12=22 | | 6-n/9=4 | | 8=4w/3;w=6 | | 3u=83 | | w^2+5w-250=0 | | 4.9-6.1u=-3.2-3.8 | | 4(-2x-7)+8=-(-6+12x)+15x-20 | | 3(3x+2)+3x=28.5 | | (x+12)^2-8=92 | | b–1=3 | | 9t-2=3t+19 | | x=27+9 | | 2(50x-15)/5-1/4=3/2x+9 | | 2/3x+8=31/2-5x | | 2(n-2)=4n-2 |